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J. Phys. A: Math. Gen. 16 (1983) 575-584. Printed in Great Britain 

Exact Bianchi-Kantowski-Sachs solutions of Einstein’s field 
equations 

Dieter Lorenz 
Fachbereich fur Physik, Universitat Konstanz, D-7750 Konstanz, Federal Republic of 
Germany 

Received 28 June 1982, in final form 31 August 1982 

Abstract. We present some old and many new exact solutions of the Einstein-Maxwell 
equations for the Bianchi type-111 and Kantowski-Sachs space-times in a unique parametri- 
sation. Solutions are given for the case of stiff matter and dust with (and without) a 
cosmological constant. 

1. Introduction 

The field equations of the general theory of relativity (GRT) for spatially homogeneous 
but anisotropic space-times have been investigated by many authors over the last 
thirty years since the basic work-of Taub (1951). These space-times belong either to 
the Bianchi types I-IX or to the Kantowski-Sachs class and are often interpreted as 
cosmological models. There are two major distinct cases that arise: orthogonal 
universes, in which the matter moves orthogonally to the hypersurfaces of 
homogeneity, and tilted universes, in which the fluid vector U is not normal to such 
hypersurfaces. However, the Kantowski-Sachs models cannot be tilted. Considering 
only those solutions containing perfect fluid matter with equation of state p = ( y  - l ) ~ ,  
1 6 y < 2 and (or) electromagnetic fields obeying the sourceless Maxwell equations or 
vacuum solutions in combination with a cosmological constant A, one would like to 
conjecture that almost all integrable cases have been found during the last three 
decades. (An almost complete list of solutions of Einstein’s field equations is given 
by Kramer et a1 (1980).) However, in a systematic investigation of the combined 
Einstein-Maxwell equations for all spatially homogeneous models we have found that 
a number of cases have not been attacked previously. 

Hughston and Jacobs (1970) (see also Jacobs 1977, Lorenz 1982b) have studied 
some properties of spatially homogeneous source-free electromagnetic fields in generic 
cosmological models with Bianchi symmetries. Their work was primarily stimulated 
by the apparent strength of a primordial intergalactic magnetic field of strength 
approximately G (Kawabata et a1 1969, Sofue et a1 1969; see also Reinhardt and 
Thiell970, Reinhardt 1972, Kolobov et a1 1976). However, no firm conclusion seems 
possible yet. The idea of a universe with a homogeneous magnetic field was proved to 
be very successful in flat (i.e. Bianchi type I) spaces (Zel’dovich and Novikov 1975, 
1982). However, since Bianchi type I models are a very special subset of spatially 
homogeneous models, one should consider more general situations in order to check 
what implications large-scale primordial magnetic fields would have on the dynamics 
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576 D Loren2 

of the Universe. The basic work of Hughston and Jacobs has shown that the existence 
of a homogeneous primordial magnetic field in our Universe is limited to Bianchi types 
I, 11, 111, VIo and VIIo. The Kantowski-Sachs models are also allowed to contain a 
pure magnetic field (MacCullum 1979). 

In papers published previously (Lorenz and Reinhardt 1980, Lorenz 1980a-d, 
1981a-c, 1982a-k, Lorenz and Zimmermann 1981) we presented new exact solutions 
for various Bianchi and Kantowski-Sachs models. In this paper we consider magnetic 
Bianchi type-I11 models and the related Kantowski-Sachs space-time. Exact solutions 
are given for the case of stiff matter ( y  = 2)  and dust ( y  = 1) with (and without) a 
cosmological constant A in a unique parametrisation. The cosmological implications 
of these solutions will be discussed in a future paper. 

2. Field equations and solutions 

The field equations to be solved are 

3 f i  +H: +H:  +N: = -;E ( 3 y  - 2)  cosh’ p - + E  (2 - y )  sinh’ 
&I + H :  + H I H z  +H1H3 - 6 ( 2 q / R d 2  = $E ( 2  - y )  + ey sinh’ p + ( f / R 1 R d 2 +  A 

&3 +H: + H3H1 +H3Hz = ;E (2  - y )  - ( f / R  1R2)* + A 

( H I  -H2)2q/R1 = EY cosh p sinh p 

- ( f /RlR2)’  + A ( l a )  
( l b )  

(IC) 

( 1 4  

( l e )  

f i 2  + H :  + H&1+ HzH3 - 6 (2q/R1)’ = +E ( 2  - y )  + ( f / R  1RJ’ + A 

where Hi = R i / R i  are the Hubble parameters (H = $&Hi), Ri  = R i ( t )  are the cosmic 
scale functions, f2/(R1R2)’ are the components of the magnetic field (f, q = constant) 
and the perfect fluid matter is characterised by the equation of state 

P = (Y - 1 ) E  l s y s 2  ( 2 )  

where E and p are, respectively, the density and pressure of the fluid. (A dot denotes 
differentiation with respect to t . )  In addition to equations (1) we have the conservation 
equations 

(In(& ‘IyR1RZR3 cosh p ) ) ’  = ( 2 / R 1 )  tanh p 
R1 sinh p ) ) ’  = 0 (In(& ( v - l ) / v  

(3u 1 
( 3 6 )  

where p denotes the hyperbolic tilt angle. The case 6 = 1 corresponds to the Bianchi 
type-I11 model and for the Kantowski-Sachs model we have S = -1/4q2 and R I  = R2. 

We will now give a complete discussion of the field equations for the cases of stiff 
matter ( y  = 2 ) ,  dust ( y  = l ) ,  vacuum (E = 0) and pure magnetic fields ( E  = 0, f # 0). 
The solutions are classified according to the values of the parameters (E, y, f, p, A). 

3. Bianchi type411 solutions 

We first consider the case S = 1. Introducing the new time variable T by dt = R 1  dT 
the linear combination of (IC) and (Id) gives 
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where ( )f = d/d.r, which can be easily integrated if A = 0 and y = 2 or E = 0. From 
( l b )  and ( Id )  we obtain 

[R2R3(ln(R1R3))’If -4q2R2R3 = [ E ( ~ - ~ ) + E Y  sinh’p +2A]R:R2R3. (4b) 

Once a first integral of (4a)  has been obtained for R2R3, we can solve (46) for R1R3. 
Finally, we have from ( l b )  and (IC) 

[R2R3(ln(R1R2))’]’- 8q2R2R3 = [ E ( ~ - ~ ) + E Y  sinh’p +2A]R:RzR3+f2(R3/R2) 

to give R1R2. In addition, we have the constraint equation 

(In R l ) ’ ( ln (R~R~) ) ’+ ( lnR~) ’ ( lnR3) ’=[~(y  sinh2p+1)+A]R: +4q2+(f/R2)’. (4d) 

We now quote all known and some new solutions. The tilted stiff matter solution 

(4c) 

( E ,  2,0,  p, 0) was found by Wainwright et a1 (1979): 

(tanh 4.r) km+4ab ( 5 a )  

R ;  = (sinh 2q.r)’(tanh ( 5 6 )  

R: = (tanh q.r)-km (5c) 

m - 4 + 4(a2  - b 2 )  = 0 

2(26*+1) R: = (sinh 247) 

( 5 4  

where a and b are constants of integration and k 2  = 1. The energy density of matter 
is given by 

E =  4q2 ( a2+2ab  cosh 2q.r+b2) 
R: sinh’ 2qr 

and the hyperbolic tilt angle p can be found from ( l e )  to be 

coth p = (l/sinh 2q.r)[cosh 2q.r + ( a / b ) ] .  (5f 1 
The non-tilted solution ( E ,  2,0 ,0 ,0)  is given by b = 0 and was found by Ruban (1978) 
and, in other forms, by Kantowski (1966), Vajk and Eltgroth (1970), Collins (1971) 
and Tsoubelis (1981). In the case of a = b = 0 the solution is reduced to the vacuum 
case (0, 0, 0, 0, 0) first given by Ellis and MacCallum (1969). The tilted magnetic 
solution ( E ,  2, f ,p ,  0) has been found by us recently (Lorenz 1982c) and can be 
presented in the form 

(6a) f 
2q 

R I  =-(cosh 2q.r)(sinh 2q.r)”’(tanh q.r)2kbz 

2q 
f 

R 3  = - tanh 247 

where kb = a. The equations ( S e )  and (5f) for E and p remain the same. (Note that 
equations ( l e )  and (11) of Lorenz ( 1 9 8 2 ~ )  contain an error of sign.) We would like 
to point out that our solution does not reduce to the above given stiff matter solution 
when f = 0. By setting b = 0 we obtain the pure magnetic solution (0, 0, f, 0,O) which 
has been previously found by Vajk and Eltgroth (1970) in a different parametrisation. 
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The non-tilted magnetic stiff matter solution (E,  2, f, 0,O) is given by 

)(sinh 2qr) 

m (tanh qr)m'24 
f 1 + (tanh q7)"' 

R 3 = 2 -  

m 2 - 4 q 2 + & i  = O  (7c 1 
with e = E ~ / ( R : R ~ ) ~ ,  This solution was also found by Tsoubelis (1981) in another 
form and reduces to the pure magnetic case if = 0. Finally we would like to point 
out that it seems to be impossible to integrate the field equations (1) with a non- 
vanishing cosmological constant A in the stiff matter case. 

We now turn to the case of dust ( y  = 1). The tilted magnetic dust solutions 
( E ,  1, f,p, A) and (E, 1, f, p, 0) can be reduced to (9) (see below) and two second-order 
differential equations for R 2  and R2R3.  However, to construct the explicit solutions 
remains a problem for the near future. The tilted dust solution (E, 1,0, p, 0) can be 
obtained in the following way. From the conservation equations ( 3 a )  and ( 3 6 )  we 
obtain 

cosh p sinh p a, b =constant. (8) RI=- E =- U b 
sinh p R2R3 

Substitution of (8) into the linear combination of ( l b ) ,  (IC) and ( l e )  yields a first-order 
ordinary differential equation for R I  whose solution is 

(9) R 1 = a/sinh qr. 

From (4a)  we obtain with the method of variation of parameters the solution 

a2b 
R 2 R 3 = y [ d + l n s i n h q r )  s i n h 2 q ~ - q ~  cosh2qT]+A s inh2qr+B cosh2qr (10) 2q 
where A and B are constants of integration. Equations ( l a ) - ( ld )  are rearranged to 
give 

R;/R3= -(R;/RI) '= -q2/sinh2 qr. (11) 

R3(7) = 77 (Z ) z =cosh qr ( ) ' = d / d t  (12) 

Applying the transformations 
2 

we obtain the differential equation 

1 77 z(l-z);i+(~-z)?j----=o. 
4 1 - 2 )  

Putting 

77 = (1 -Zy2f(Z)  v ( v - 1 ) = 1  

z (1 - Z ) f +  [4 - (v + l)z]f -i v'f = 0 

we arrive at the hypergeometric equation 

which can be solved in terms of hypergeometric functions. For R 2  we could solve 
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directly by a very similar calculation instead of using (10). If A #  0 equation (11) is 
to be replaced by 

R;/R3 = (Aa2-q2)/sinh2 q7. (17) 

R ~ ( T )  = (6) qr  = *ln[5/(1 + 5 ) 1 ” ~  6 > 0  (18) 

Introducing the new variables 

we obtain 
(ha2  -q2) i t (  1 + 5) + (25 + 1) - 4 q = o  

q2  
which becomes a hypergeometric equation by 

After solving 

R;’ Aa2-q2 
R z  sinh2qr  
-= +4q2 

in a similar manner for R2= R2(7) the case ( E ,  1, 0, p, A) is determined by (9), (18), 
(19) and (20). 

The non-tilted dust solutions can be obtained easily from 

-4q2+[e (y - l ) -AB: -  

R ; R ;  --=(&) R’ + i ~ y R :  
R3 R I  
R;IRI= RiIR2. 

In the case R ; = 0 we obtain the special vacuum solution (0, 0, f, 0, A) with R s  = R3(r)  
arbitrary. The dust solution ( E ,  l,O, 0, A) has been given by Ellis (1967) (see also 
Kramer eta1 1980). If R ;  # 0 equation (21a) is a Bernoulli-type differential equation, 
the solution of which can be written for E = 0 or y = 1 (y  = R1/2q): 

2 2 -1/2 2q.r = 1 [iAy4+y2+cy -(f/4q 1 1 dy. 
J 

Equation (22) was first given by Stewart and Ellis (1968) for the case E = 0. The 
integration can be performed by elementary functions if c = 0, A = 0 or f = 0. The 
general dust solution ( E ,  1, 0, 0, A) with c # 0 has been found by us very recently 
(Lorenz 1982h). If R I  = cc, q = 4 then 6 satisfies 

(d(/dr)2 = ne4 - k t 2  + 5 (23)  
where R = +Ac2 and k = -1. The solution of this equation with 5 = 0 at T = 0 can be 
written as 

3 ( 3 4 ( & ;  g2, g d + k ) - ’  (24) 

(25 )  

where 4 is the Weierstrass elliptic function which involves the two parameters g 2  and 
g 3  and satisfies 

(d4/dT12 = 443 - g2d  - g 3 .  
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Substituting in the differential equation ( 2 3 )  we find that ( 2 4 )  is a solution if 

g ,  = 4(&k -a). ( 2 6 )  4 
g 2  = 5 

The function q5 can be expressed in terms of elliptic functions, the exact relationship 
depending on the sign of the discriminant: 

A:=g: -27g:  = % ( 2 - 2 k  + 2 7 R ) ( 2 + 2 k  - 2 7 R ) .  ( 2 7 )  

The corresponding solution for R 3  can be obtained from (216). We find 
(i) A <  0: 

1 - cn(a7, k l )  
R ~ = c  a 2 +e+(a2-e )cn (aT ,k l )  (28a  1 

2 a  3c sn(ay7, k 1) dn(a.r, k 1 )  

(1-cn(a.r, k l ) ) [ a 2 + e  +(a2-e)cn(aT,  kl)] R3 = 

sn(2a7, k l )  dn(2a7, k l )  
1 -cn(2a7,’kl) 

(286) 
(ii) A>O:  

a 4 = e ( 3 e - 2 k )  2P2  = k - 3e + ( 1  - 3e2  + 2ek)’” W e )  

(28f  1 4k: = 2 + ( k - 3 e ) a - ’  

R = e 2 ( k - e )  (2%) 

k :  = -1 + ( k  - 3e)p- ’  

and E ( ~ Q ,  k l ) ,  E (Q,  k l )  are elliptic integrals of the second kind with Q = cn-’(aT, kl ) .  
If we regard 0 as being known then e is given by solving equation ( 2 8 g ) ;  alternatively, 
for a given value of the parameter e, equations ( 2 8 e )  and ( 2 8 f )  determine all the 
relevant quantities and for each e we have a family of solutions. The energy density 
E is given by E = &;/ (R:R3) ,  E ;  =constant. 

If E ;  = 0 our solution reduces to the general vacuum solution (0, 0, 0, 0, A) first 
given by Cahen and Defrise (1968) in a different parametrisation. Equation ( 2 2 )  can 
be rewritten in the form 

f ( u )  = (2mu - f 2 + $ A u 4 + u 2 ) / u 2  ( 2 9 )  
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' 2  where 2m = c, 4 = f, U = R 1 .  ?(U) = R 1 and ( ) = d/dt. Equation (29) was first given 
by Ruban (1972, 1978). The special cases f = 0, A # 0 and f # 0, A = 0 have been 
also given by Cahen and Defrise (1968) (see also Kramer et a1 1980). The special 
dust solutions ( E ,  1,0 ,0 ,  A) with c = 0 are given by 

(i) A>O: 

R I  = R2 = kf2q(3/A)'/'(sinh 2 q ~ ) - '  k f 2 =  1 ( 3 0 ~ )  

where a and b are constants of integration. If E ;  = 0 our solutions reduce to the 
vacuum solutions (0, 0, 0, 0, A) obtained recently by Moussiaux e? a1 (1981) and are 
also contained in the general vacuum solution (29) as has been shown by MacCallum 
et a1 (1982). 

The special magnetic dust solution ( E ,  1, f, 0, A) with c = 0 is given by 
(i) A>O: 

(31a) 4 1 / 2  1/2 R I  = 2q[-$A+$A(l+ 12f2A/q ) 3 nc(a7, kl)  

sn(2a7, kl)  dn(2a7, kl)  . 
+ b)l U + ? E O  a T - E ( h 7 ,  k1)- 

1 - c n ( 2 a ~ ,  kl) 
(31b) 

[ 1 2 (  

sn(a.r, kl) dn(a7, kl)  
R3 = 

cn(a7, k d  

(ii) A < 0: 

R 1  = 2q[fA+fA(l -  12f2A/q4)1/2]1/2 nc(P7, k2) (3 I C )  

(314 
where 

a = 2 q ( l +  12f2A/q4)'l4 P = 24 (--A)'I2(-A2 + 3f2/ 16q4 (31e) 

( 3 k )  

k: = [2($A2+3f2/q4A)1/2+3/A]/4($A2+3f2/q4A)1/2 (3 If) 
k: = [2($A2 - 3f2/q4A)'/2 - 3/A]/4($A2 - 3f2/q4A)1/2. 

The general magnetic dust solution ( E ,  1, f, 0,O) with c = l / q  is given by 

(32a) R I  = R2 = U cosh 247 - 1 
2 

E O  R3 = - sinh 247 + ~ [ 2 q a ~  sinh 247 - (1 + a )  cosh '247 + 241) (32b) 

where a 2  = [1+ (f2/4q2)] and E = e i /R:R3 ,  E ;  =constant. The solution given here is 
very similar to that given by Vajk and Eltgroth (1970). These expressions define the 

R I  l (  8q a 
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solutions first obtained by Doroshkevich (1969,  Thorne (1966, 1967) and Shikin 
(1966) in yet another form. If E :  vanishes we obtain the (0 ,  O,f, 0,O) solution first 
given by Vajk and Eltgroth (1970) while for E ;  =f= 0 the solution reduces to the 
vacuum case (0 ,  0, 0, 0,0)(6a-c). The case f = 0 ( E ,  1, 0, 0,O) has been also given by 
Kompaneets and Chernov (1964), Kantowski (1966) and Kantowski and Sachs (1966) 
in different forms. 

Finally, we present the special magnetic dust solution ( E ,  1, f, 0,O) with c = 0: 

R 1  = 24 exp(2q~)  + (f2/32q3) exp(-2q~) (33a) 

64q4 exp(2q.r) - f’ exp(-2q~) 
- 2q 64q4 exp(2q~)  +f2 exp(-2q~) 

R -  

(64q4 exp(4q~)  -f 2 ) l+f* 64q4 exp(4q.r) - 3f2 [ 3s:. ( In(  ( exp(4q~)) ’~  ) - 64q4 exp(4q~)  -f’ x a+- 

(336) 

If f = 0, it reduces to the special dust solution given by Ftaclas and Cohen (1979) in 
a different parametrisation. 

4. Kantowski-Sachs solutions 

Since there are no tilted Kantowski-Sachs models the solutions presented here are 
classified according to the parameters ( E ,  y, f, A). The results are as follows. 

f 1 +(tan T ) ’ ~  
R 1  =-(sin T )  

2m (tan T ) ~  

2m   tan^)^ 
R 3 = -  f l + ( t a n ~ ) ~ ~  (346) 

m 2 -  1 + E :  = O  (34c) 

where E = e: /R?R: .  This solution is new and includes the pure magnetic case 
(0 ,  O,f, 0) first given by Vajk and Eltgroth (1970) in a somewhat different form. 

4.2. ( E ,  2, U, U )  

R :  =(sin .rl2(tan & l k m  
R :  = (tan i T ) - k m  

m2-4(1 - E ; )  = 0 k 2 =  1. 

Kantowski (1966) first obtained these solutions and they were rediscovered by Vajk 
and Eltgroth (1970) in a different form. For E ;  = O  the solution is reduced to the 
vacuum case (0, 0, 0,O) also given by Kantowski (1966). Until now no stiff matter 
solutions with A Z O  have been foulid. This is in contrast to the Bianchi type-I and 
type-V stiff matter solutions with A # 0 given by Ellis and MacCallum (1969). 
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4.3. ( E ,  I , f ,  A) 

The special magnetic dust solutions with c = 0 are given by 

(a) R 1  =[:A+fA(l +$f2A)1/2]1/2 ns(w.r, k )  

cn(w7, k )  dn(wT, k )  
sn(wT, k )  R3 = [ a  + 2 ($(k ' 2 w ~  - 2E(wT, k )  

+ (1 + k 2  - 2k2 sn2(wT, k)) t n (w~ ,  k )  nd(w7, k ) )  + b 

(6) RI = [:A+fA(l +4f2A)1/2]1/2 nc(w7, k )  

R3 = sn(w7, k )  dn(wT, k) [U+$(wT-E(2wT, k)  
cn(wT, k)  

+b>3 ( 3 6 4  
sn(2w7, k )  dn(2w~,  k )  

1 - cn(2w7, k )  
- 

where w =(l+'$f2A)1/4, k2=[(1+'$f2h)1/2+2] / (1+$f2A)1/2  and k"= 1-k2.  These 
solutions are new and reduce to the case ( E ,  1,0,  A), which corresponds to the Bianchi 
type-I11 solutions (30a-d). The Kantowski-Sachs dust solutions given here are derived 
from the corresponding integral (22) by transforming y 2 +  -y . The energy density 
is given by E = &;/R:R3 .  The most general solution ( E ,  1,0,  A) with c # 0 is given by 
(28a-g) with k = 1 and can be also given in the form (29). 

2 

4.4. (E,  1, f, 0) 

We obtain two different kinds of solutions: 

( a )  R I  = i(c + b sin T )  (37a) 

(37b) 

(37c) 

2 1 
c + b s i n T  

(d  cos T +%[(c2 + b2)  sin T + 2cb - b 2 T  cos T] 
2b 

R3 = 

(6) R1=;(c+bcosr )  
2 1 

R3 = (d sin T +?[(c2+ b2)  cos T +2cb + b 2 T  sin T]  c + b  COST 26 ( 3 7 4  

where b = ( ~ ~ - - 4 f ~ ) ~ / ~ .  The first one is entirely new. The second has been first 
obtained by Doroshkevich (1965), Thorne (1966, 1967), Shikin (1966) and Vajk and 
Eltgroth (1970) in different parametrisations. 
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